Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672973

RESUMO

The ABO blood groups, Lewis antigens, and secretor systems are important components of transfusion medicine. These interconnected systems have been also shown to be associated with differing susceptibility to bacterial and viral infections, likely as the result of selection over the course of evolution and the constant tug of war between humans and infectious microbes. This comprehensive narrative review aimed to explore the literature and to present the current state of knowledge on reported associations of the ABO, Lewis, and secretor blood groups with SARS-CoV-2 infection and COVID-19 severity. Our main finding was that the A blood group may be associated with increased susceptibility to SARS-CoV-2 infection, and possibly also with increased disease severity and overall mortality. The proposed pathophysiological pathways explaining this potential association include antibody-mediated mechanisms and increased thrombotic risk amongst blood group A individuals, in addition to altered inflammatory cytokine expression profiles. Preliminary evidence does not support the association between ABO blood groups and COVID-19 vaccine response, or the risk of developing long COVID. Even though the emergency state of the pandemic is over, further research is needed especially in this area since tens of millions of people worldwide suffer from lingering COVID-19 symptoms.

2.
Antibiotics (Basel) ; 13(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534720

RESUMO

Carbapenem-resistant Gram-negative bacterial infections are a major public health threat due to the limited therapeutic options available. The introduction of the new ß-lactam/ß-lactamase inhibitors (BL/BLIs) has, however, altered the treatment options for such pathogens. Thus, four new BL/BLI combinations-namely, ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, and ceftolozane/tazobactam-have been approved for infections attributed to carbapenem-resistant Enterobacterales species and Pseudomonas aeruginosa. Nevertheless, although these antimicrobials are increasingly being used in place of other drugs such as polymyxins, their optimal clinical use is still challenging. Furthermore, there is evidence that resistance to these agents might be increasing, so urgent measures should be taken to ensure their continued effectiveness. Therefore, clinical laboratories play an important role in the judicious use of these new antimicrobial combinations by detecting and characterizing carbapenem resistance, resolving the presence and type of carbapenemase production, and accurately determining the minimum inhibitor concentrations (MICs) for BL/BLIs. These three targets must be met to ensure optimal BL/BLIs use and prevent unnecessary exposure that could lead to the development of resistance. At the same time, laboratories must ensure that results are interpreted in a timely manner to avoid delays in appropriate treatment that might be detrimental to patient safety. Thus, we herein present an overview of the indications and current applications of the new antimicrobial combinations and explore the diagnostic limitations regarding both carbapenem resistance detection and the interpretation of MIC results. Moreover, we suggest the use of alternative narrower-spectrum antibiotics based on susceptibility testing and present data regarding the effect of synergies between BL/BLIs and other antimicrobials. Finally, in order to address the absence of a standardized approach to using the novel BL/BLIs, we propose a diagnostic and therapeutic algorithm, which can be modified based on local epidemiological criteria. This framework could also be expanded to incorporate other new antimicrobials, such as cefiderocol, or currently unavailable BL/BLIs such as aztreonam/avibactam and cefepime/taniborbactam.

3.
Viruses ; 13(6)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198719

RESUMO

Humoral immunity has emerged as a vital immune component against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nevertheless, a subset of recovered Coronavirus Disease-2019 (COVID-19) paucisymptomatic/asymptomatic individuals do not generate an antibody response, constituting a paradox. We assumed that immunodiagnostic assays may operate under a competitive format within the context of antigenemia, potentially explaining this phenomenon. We present a case where persistent antigenemia/viremia was documented for at least 73 days post-symptom onset using 'in-house' methodology, and as it progressively declined, seroconversion took place late, around day 55, supporting our hypothesis. Thus, prolonged SARS-CoV-2 antigenemia/viremia could mask humoral responses, rendering, in certain cases, the phenomenon of 'non-responders' a misnomer.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/sangue , Antígenos Virais/imunologia , Teste Sorológico para COVID-19/normas , COVID-19/diagnóstico , SARS-CoV-2/imunologia , Anticorpos Antivirais/metabolismo , Antígenos Virais/metabolismo , Sítios de Ligação de Anticorpos , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Teste Sorológico para COVID-19/estatística & dados numéricos , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/sangue , Masculino , Sensibilidade e Especificidade , Soroconversão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...